Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Process Saf Environ Prot ; 174: 548-560, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2306460

ABSTRACT

Aerosols such as PM2.5 and PM10 can have an immense impact on human health. With the outbreak of SARS-CoV-2, it is urgent to filter aerosols by media filtration technology. Electrospun nanofibers are a promising material for achieving high efficiency, low resistance, light weight, and environmentally friendly air filtration. But research on filtration theory and computer simulation of nanofiber media is still lacking. The traditional method involving computational fluid dynamics (CFD) and Maxwell's first-order slip boundary overestimates the slip velocity on the fiber surface. In this study, a new modified slip boundary was proposed, which introduced a slip velocity coefficient on the basis of the no-slip boundary to address the slip wall. Our simulation results were compared with the experimental pressure drop and particle capture efficiency of real polyacrylonitrile (PAN) nanofiber media. The computational accuracy on pressure drop of the modified slip boundary improved 24.6% and 11.2% compared with that of the no-slip boundary and Maxwell's first-order slip boundary, respectively. It was found that the particle capture efficiency near the most-penetrating particle size (MPPS) was significantly increased when slip effect occurred. This may be explained by the slip velocity on the fiber surface, which would make particles more accessible to the fiber surface and captured by interception.

2.
Aip Advances ; 12(12), 2022.
Article in English | Web of Science | ID: covidwho-2186662

ABSTRACT

Face masks act as air filters that collect droplets and aerosols, and they are widely used to prevent infectious diseases, such as COVID-19. Herein, we present a numerical simulation model to understand the collection behavior of aerosols containing submicron-sized droplets inside a realistic microstructure of commercially available face masks. Three-dimensional image analysis by x-ray computed tomography is used to obtain the microstructures of two types of commercial face masks, and the aerosol permeation behavior in the obtained microstructures is investigated with a numerical method coupled with computational fluid dynamics and a discrete phase model. To describe the complex geometry of the actual fibers, a wall boundary model is used, in which the immersed boundary method is used for the fluid phase, and the signed distance function is used to determine the contact between the droplet and fiber surface. Six different face-mask domains are prepared, and the pressure drop and droplet collection efficiency are calculated for two different droplet diameters. The face-mask microstructure with the relatively larger pore, penetrating the main flow direction, shows a high quality factor. A few droplets approach the pore accompanied by fluid flow and fibers collect them near the pore. To verify the effect of the pore on the collection behavior, six different model face-mask domains of variable pore sizes were created. Additionally, droplet collection near the pore is observed in the model face-mask domains. Specific pore-sized model masks performed better than those without, suggesting that the large pore may enhance performance.

3.
Tekstilec ; 65(3):227-241, 2022.
Article in English | Web of Science | ID: covidwho-2100462

ABSTRACT

Filtration is considered the keystone for clarification and control of contamination in pharmaceutical and bi-opharmaceutical manufacturing. From production to in-process to chemical and research laboratories to the purification of water for sterile and nonsterile products, all of which involve some form of filtration in order to achieve a good manufacturing practice (GMP). Textile materials possess a significant contribution to the pharmaceutical filtration system. Textile material in pharmaceutical filtration is used in the form of filter media or medium. Flexible in nature, large pore distribution and non-metallic properties of textile materials have led to widespread use as filter media for many years. In filtration processes, a proper selection of filter media/ membrane material is usually the most critical aspect for ensuring efficient separation. Generally, solid-liquid and solid-gas separation is done by the filter media. This paper emphasises solid-liquid filtration. Moreover, this paper reviews the water requirement, filtration processes and the role of textile in the filtration system of pharmaceutical industries. This paper also offers insight into the current market trend and COVID-19 impact on the pharmaceutical filtration industry. Furthermore, gathered information may be helpful to those studying and working in pharmaceutical engineering, filtration technology, and wastewater treatment and can get knowledge about filtration systems.

4.
Indoor Air ; 32(9): e13103, 2022 09.
Article in English | MEDLINE | ID: covidwho-2052595

ABSTRACT

The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 µm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Aircraft , COVID-19/prevention & control , Dust , Filtration , Humans , Polymers , Respiratory Aerosols and Droplets
5.
International Journal of Environmental Research and Public Health ; 19(10):6296, 2022.
Article in English | ProQuest Central | ID: covidwho-1871702

ABSTRACT

When searching for ‘total inward leakage’ on Google, the first hit refers to a statement by the National Institute of Occupational Safety and Health [3]: “Total inward leakage (TIL) is an estimate of the performance of a respirator, which is measured as the leakage of contaminants through the filter media and through the face-seal interface and exhalation valve of respiratory protective devices under laboratory conditions. There is a lack of consensus on the most appropriate test method to measure TIL”. [...]it is not useful to discuss this with respect to its application in EN149:2001 [2]. For other tasks, good quality surgical masks provide sufficient protection. Since our paper was published, two additional systematic reviews have analyzed the current collection of studies, including the more recent studies.

6.
Membranes (Basel) ; 12(6)2022 May 30.
Article in English | MEDLINE | ID: covidwho-1869710

ABSTRACT

Electrospun nanofibres excel at air filtration owing to diverse filtration mechanisms, thereby outperforming meltblown fibres. In this work, we present an electrospun polylactide acid nanofibre filter media, FilterLayrTM Eco, displaying outstanding bactericidal and virucidal properties using Manuka oil. Given the existing COVID-19 pandemic, face masks are now a mandatory accessory in many countries, and at the same time, they have become a source of environmental pollution. Made by NanoLayr Ltd., FilterLayrTM Eco uses biobased renewable raw materials with products that have end-of-life options for being industrially compostable. Loaded with natural and non-toxic terpenoid from manuka oil, FilterLayr Eco can filter up to 99.9% of 0.1 µm particles and kill >99% of trapped airborne fungi, bacteria, and viruses, including SARS-CoV-2 (Delta variant). In addition, the antimicrobial activity, and the efficacy of the filter media to filtrate particles was shown to remain highly active following several washing cycles, making it a reusable and more environmentally friendly option. The new nanofibre filter media, FilterLayrTM Eco, met the particle filtration efficiency and breathability requirements of the following standards: N95 performance in accordance with NIOSH 42CFR84, level 2 performance in accordance with ASTM F2100, and level 2 filtration efficiency and level 1 breathability in accordance with ASTM F3502. These are globally recognized facemask and respirator standards.

7.
Fibers ; 9(12):84, 2021.
Article in English | ProQuest Central | ID: covidwho-1591631

ABSTRACT

Computational modeling of air filtration is possible by replicating nonwoven nanofibrous meltblown or electrospun filter media with digital representative geometry. This article presents a methodology to create and modify randomly generated fiber geometry intended as a digital twin replica of fibrous filtration media. Digital twin replicas of meltblown and electrospun filter media are created using Python scripting and Ansys SpaceClaim. The effect of fiber stiffness, represented by a fiber relaxation slope, is analyzed in relation to resulting filter solid volume fraction and thickness. Contemporary air filtration media may also be effectively modeled analytically and tested experimentally in order to yield valuable information on critical characteristics, such as overall resistance to airflow and particle capture efficiency. An application of the Single Fiber Efficiency model is incorporated in this work to illustrate the estimation of performance for the generated media with an analytical model. The resulting digital twin fibrous geometry compares well with SEM imagery of fibrous filter materials. This article concludes by suggesting adaptation of the methodology to replicate digital twins of other nonwoven fiber mesh applications for computational modeling, such as fiber reinforced additive manufacturing and composite materials.

8.
Polymers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438694

ABSTRACT

Electrospun nanofibres can outperform their melt-blown counterparts in many applications, especially air filtration. The different filtration mechanisms of nanofibres are particularly important when it comes to the air filtration of viruses (such as COVID-19) and bacteria. In this work, we present an electrospun nanofibre filter media, FilterLayrTM by NanoLayr Ltd., containing poly(methyl methacrylate)/ethylene vinyl alcohol nanofibres. The outstanding uniformity of the nanofibres was indicated by the good correlation between pressure drop (ΔP) and areal weight with R2 values in the range of 0.82 to 0.98 across various test air velocities. By adjusting the nanofibre areal weight (basis weight), the nanofibre filter media was shown to meet the particle filtration efficiency and breathability requirements of the following internationally accepted facemask and respirator standards: N95 respirator facemask performance in accordance with NIOSH 42CFR84 (filtration efficiency of up to 98.10% at a pressure drop of 226 Pa and 290 Pa at 85 L·min-1 and 120 L·min-1, respectively), Level 2 surgical facemask performance in accordance with ASTM F2299 (filtration efficiency of up to 99.97% at 100 nm particle size and a pressure drop of 44 Pa at 8 L·min-1), and Level 2 filtration efficiency and Level 1 breathability for barrier face coverings in accordance with ASTM F3502 (filtration efficiency of up to 99.68% and a pressure drop of 133 Pa at 60 L·min-1), with Level 2 breathability being achievable at lower nanofibre areal weights.

9.
Polymers (Basel) ; 13(7)2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1389502

ABSTRACT

Currently, the inappropriate disposal of plastic materials, such as polyethylene terephthalate (PET) wastes, is a major environmental problem since it can cause serious damage to the environment and contribute to the proliferation of pathogenic microorganisms. To reduce this accumulation, PET-type bottles have been recycled, and also explored in other applications such as the development of membranes. Thus, this research aims to develop electrospun microfiber membranes from PET wastes and evaluate their use as an air filter media. The solution concentrations varied from 20 to 12% wt% of PET wastes, which caused a reduction of the average fiber diameter by 60% (from 3.25 µm to 1.27 µm). The electrospun filter membranes showed high mechanical resistance (4 MPa), adequate permeability (4.4 × 10-8 m2), high porosity (96%), and provided a high collection efficiency (about 100%) and low-pressure drop (212 Pa, whose face velocity was 4.8 cm/s) for the removal of viable aerosol nanoparticles. It can include bacteria, fungi, and also viruses, mainly SARS-CoV-2 (about 100 nm). Therefore, the developed electrospun membranes can be applied as indoor air filters, where extremely clean air is needed (e.g., hospitals, clean zones of pharmaceutical and food industry, aircraft, among others).

10.
Membranes (Basel) ; 11(4)2021 Mar 30.
Article in English | MEDLINE | ID: covidwho-1159455

ABSTRACT

Wearing face masks, use of respirators, social distancing, and practicing personal hygiene are all measures to prevent the spread of the coronavirus disease (COVID-19). This pandemic has revealed the deficiency of face masks and respirators across the world. Therefore, significant efforts are needed to develop air filtration and purification technologies, as well as innovative, alternative antibacterial and antiviral treatment methods. It has become urgent-in order for humankind to have a sustainable future-to provide a feasible solution to air pollution, particularly to capture fine inhalable particulate matter in the air. In this review, we present, concisely, the air pollutants and adverse health effects correlated with long- and short-term exposure to humans; we provide information about certified face masks and respirators, their compositions, filtration mechanisms, and the variations between surgical masks and N95 respirators, in order to alleviate confusion and misinformation. Then, we summarize the electrospun nanofiber-based filters and their unique properties to improve the filtration efficiency of face masks and respirators.

SELECTION OF CITATIONS
SEARCH DETAIL